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Abstract

A concrete–steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the

concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the

formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental

tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the

proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on

wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the

method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the

concrete–steel interface.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Reinforced concrete (RC) structures are widely used in civil infrastructure systems due to its low
construction cost and long service life under various conditions. The interface between concrete and steel in
RC governs the interaction between the two types of materials under loading. When the interface is seriously
damaged, e.g. when a micro-crack is formed, debonding takes place with large slip, and the load-transferring
capacity of the interface will drop dramatically. Soh et al. [17] presented a damage model, which included the
normal and tangential damage factors, to describe the concrete–steel interface mechanism. A RC element is
developed based on this damage model to simulate the bond deterioration in RC structures [18]. Zhu and Law
[21] developed a concrete–steel interface element for damage detection of RC structures from static responses.
However, the bonding loss is insensitive to the static or low-frequency structural responses and it is
significantly more difficult to be detected than damages occurring on concrete such as cracks and loss of cross
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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sections. On the other hand, the guided wave (GW) based methods generate a fairly high frequency pulse to
the structure, which make minor damage detection become possible.

GW can be defined as stress waves forced to follow a path defined by the material boundaries of a structure.
Due to its capacity of relatively long propagation range as well as its flexibility in selecting sensitive mode-
frequency combinations, GW has been found as an effective and efficient way to detect incipient damages in
civil, mechanical and aerospace structures recently. Raghavan and Cesnik [16] presented a literature review for
GW based structural health monitoring. The majority of research has focused on damage sources such as
delamination, low velocity impact and debond in sandwich and stiffened CFRP structures [5]. The
piezoelectric materials are widely used for exciting and measuring GWs in structural health monitoring. With
the use of built-in actuators and sensors, the GW based approach is complementary to development of
integrated systems for continuous on-line monitoring [7]. Recently, it is used to detect the delamination at the
interface between steel bars and concrete [12,19]. Further theoretical analysis is needed to quantify the
delamination at the interface between the concrete and steel bars.

Wave propagation analysis has been extensively used for structural health monitoring. Proper use of these
techniques requires good knowledge of the effects of damage on the wave characteristics. This needs accurate
and computationally efficient modeling of the damaged structures. A number of different numerical
computational techniques can be used for the analysis of wave propagation. In contrast to wave propagation
studies, wave interaction with damage has found less attention. The global matrix approach [8] is used to
model an elastic hollow cylinder coated with a viscoelastic material [1]. It is further applied to quantifying the
reflection and transmission coefficients of discontinuities in waveguides from measured data [11]. In this
approach, there is no explicit relationship between the reflection or transmission coefficients and the damage
extent. Finite element method is normally used to model wave propagation in the time domain [10,20]. It may
provide accurate dynamic characteristics of a structure if the wavelength is large as compared to the mesh size.
However, the finite element solutions become increasingly inaccurate and inefficient as the frequency
increases. This is because the wavelengths are very small at high frequencies, which requires a very fine finite
element mesh size for a reliable modeling. Hence, finite element formulation for wave propagation problems
requires large system size to capture the high frequency waves.

The problem can be solved in the frequency domain. One such method is the spectral element method
(SEM) [2]. In SEM, the governing partial differential equations (PDEs) are transferred to ordinary differential
equations (ODEs) in spatial dimension by using FFT. These ODEs are then solved exactly, which are used as
interpolation functions for the spectral element formulation. The use of exact solution in the element
formulation ensures the exact mass and stiffness distribution. It means that only one element needs be used for
modeling a very large part of a structure, under the condition that this part has no discontinuities. Hence, the
required number of elements is much less in comparison to the conventional finite element formulation. Palacz
and Krawczuk [14] presented a rod spectral finite element with a transverse open and non-propagation crack.
The influence of the crack growth on the wave propagation is examined using SEM. Palacz et al. [15] examined
the effect of an additional mass placed on an isotropic rod using the changes in wave propagation, and
developed a spectral element for isotropic rod with an additional mass. Ostachowicz [13] gives an informative
review of the principles, equations and applications of damage modeling and elastic wave propagation in a
cracked rod, a beam and a plate. Mitra and Gopalarishnan [9] used the Daubechies scaling functions for
approximation in the time domain for reduction of PDEs to ODEs, and developed a wavelet-based spectral
finite element method for modeling and detection of de-lamination in composite beams.

In this study, a concrete–steel interface spectral element is developed to model the GW propagation along a
steel rebar in the concrete. Scalar damage parameters characterizing changes of the interface conditions are
incorporated into the formulation of the spectral finite element. It is then used to detect and assess debonding
damages along the rebar and concrete interface. Experimental tests are carried out on a RC beam with
embedded piezoelectric elements. The piezoelectric elements are used to generate a high frequency pulse force
on the rebar and to record the GW propagation along the rebar. Test results are compared with the numerical
simulation results to check the performance of the proposed model and algorithm. Parametric simulations are
also performed to evaluate the effect of different damage scenarios on the wave propagation in the RC
structures. Numerical simulations and experimental results show that the method is effective to model wave
propagation along the steel rebar in concrete and can be used to detect damage in the concrete–steel interface.
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2. Spectral finite element for RC structures

2.1. Concrete– steel interface spectral element

In this study, the piezoelectric elements are mounted on steel bars embedded in concrete and these elements
are used to generate and receive the wave signal. In order to explore the wave propagation along the rebar in
the concrete, a novel spectral element is needed to describe the wave propagation at the interface between the
steel bars and concrete. For RC structures, the length of the steel rebar is much larger than its radius, so it is
modeled as an ideal rod in this study. Though there are several rod theories with different number of modes,
elementary theory is accurate enough to simulate the wave propagation on the condition that the frequency of
the transmitting wave is lower than 100 kHz [6], which is within the scope of this study.

In this section, it is assumed that concrete will deform axially under the shear force from steel rebar.
The cross section of the beam and their force analysis are illustrated in Fig. 1. Based on elementary theory
[2,3], the equations of steel and concrete motion can be written as follows:

EsAs
@2usðx; tÞ

@x2
¼ rsAs

@2usðx; tÞ

@t2
þ ZsAs

@usðx; tÞ

@t
þ qðxÞ (1)

qðxÞ ¼ EcAc
@2ucðx; tÞ

@x2
þ rcAc

@2ucðx; tÞ

@t2
þ ZcAc

@ucðx; tÞ

@t
(2)

where us(x,t), uc(x,t) are the axial displacements of the steel rebar and concrete at location x and time t. Es, Ec

denote the Young’s modulus of the steel and concrete. As and Ac are the areas of the cross sections
corresponding to the steel and concrete; respectively. Here Ac should be defined as the effective area of
concrete, which will be explained later. rs; rc are the densities of the steel and concrete. Zs; Zc are the viscous
damping ratios of the steel and concrete, which are used to simulate the material damping. Usually, a small
value of Z is used as follows [2]:

Zs ¼ rso0 � 10�3; Zc ¼ rco0 � 10�3 (3)

where o0 is a circular frequency. The typical frequency used in this study is 30–60 kHz.
Fig. 1. Concrete–steel interface spectral element: (a) cross section of concrete beam; (b) force on steel rebar; (c) force on concrete based on

axial deformation assumption.
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Combining Eqs. (1) and (2) together, one can obtain

ðEsAs � EcAcÞ
@2u

@x2
¼ ðrsAs þ rcAcÞ

@2u

@t2
þ ðZsAs þ ZcAcÞ

@u

@t
(4)

To further simplify the above equation, the following equivalent parameters are defined

E ¼ Eeq ¼
EsAs � EcAc

A

r ¼ req ¼
rsAs þ rcAc

A

Z ¼ Zeq ¼
ZsAs þ ZcAc

A
(5)

where A ¼ Aeq ¼ As þ Ac.
Using the equivalent parameters defined in Eq. (5), Eq. (4) can be written as follows:

EA
@2uðx; tÞ

@x2
¼ rA

@2uðx; tÞ

@t2
þ ZA

@uðx; tÞ

@t
(6)

In order to solve Eq. (6), the dynamic responses are expressed in the spectral representation [2] as:

uðx; tÞ ¼
XN

n

ûðx;onÞe
jont (7)

where j ¼
ffiffiffiffiffiffiffi
�1
p

and ûðx;onÞ is the spatially dependent Fourier coefficient.
For every on, Eq. (6) can be written as:

EA
@2û

@x2
þ ðo2

nrA� jonZAÞû ¼ 0 (8)

where û is the abbreviation of ûðx;onÞ.
From Eq. (8), the general longitudinal displacement (with the exponential solution e�jkx) for a rod can be

written as:

ûðxÞ ¼ Be�jkx þ Ceþjkx; k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2rA� joZA

EA

r
(9)

where B, C denote the amplitudes of inward and outward waves, respectively, which will be determined by
boundary conditions, and k is the wavenumber.

Through the bond, concrete and steel can work together. But in reality, concrete will not deform uniformly
over the cross section. Only the concrete near the steel bar will have similar deformation as the steel rebar, and
the deformation decreases along the cross section away from the steel bar towards the concrete surface.
Therefore, the axial deformation of the concrete beam is not uniform over the cross section. Based on the axial
deformation assumption and stress equilibrium, an equivalent area Ac is then defined, which can be obtained
from the wave speed. Since Z is very small, the wave speed along the steel rebar in concrete can be represented
as follows:

c ¼

ffiffiffiffiffiffiffi
EA

rA

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EsAs � EcAc

rsAs þ rcAc

s
(10)
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Thus,

Ac ¼
Es � rsc

2

Ec þ rcc2
As (11)

In practice, c can be measured easily. Based on Eq. (11), Ac can be obtained, and the proper parameters, E, A,
Z and r, can be calculated by Eq. (5). Since Ac changes with the radius of steel bar, the quality of concrete, the
interface condition and others, it is very complicated to formulate an empirical function for it. The best
determination method is to extract the wave speed from the measured signal of the intact structure.

2.2. Generalized SEM

The above equations describe wave propagation in a concrete–steel interface spectral element with
homogeneous properties. When the interface has non-uniform properties such as changing material or
sectional properties along its length owing to damages associated with material deterioration, corrosion
and/or cracks, the reflection and transmission coefficients will be different in different segments. The damaged
zones need be formulated accordingly with their respective properties, hence multiple spectral elements are
necessary. A generalized model for multiple spectral elements is displayed in Fig. 2. The spectral displacement
of the ith element can be defined as follows:

ûiðxÞ ¼ Bie
�jkix þ Cie

�jkið
Pi

p¼1
Lp�xÞ

for x 2 L�
XN

p¼i

Lp;
Xi

p¼1

Lp

 !
(12)

where L represents the length of the rebar, Lp is the length of the pth element.
If the actuator and sensor are located in the middle of the rebar at locations a and b, respectively, the

structure should at least be discretized into 3 elements with the actuator and sensor in the first and the last
element, and the locations of the two elements being xa ¼ L1 and xb ¼ L�LN. Generally, for N elements, there
are 2N unknown coefficients fBi;Ci; i ¼ 1; 2; . . . ;Ng, which can be calculated as a function of the nodal
spectral displacements. The following boundary conditions are taken into account.
(a)
 At the left end of the 2nd element (xa ¼ L1)

û2ðxaÞ ¼ q̂a (13)

where q̂a is the nodal displacement at location a (actuator).

(b)
 At the right end of an intermediate element i, the displacement and strain compatibility leads to

ûiþ1 L�
XN

p¼iþ1

Lp

 !
� ûi

Xi

p¼1

Lp

 !
¼ 0

qûiþ1 L�
PN

p¼iþ1Lp

� �
qx

�
qûi

Pi
p¼1Lp

� �
qx

¼ 0 (14)
Nth1st 2nd ith N-1th

Location a: Excitation Location b: Response

ith element location ith element length

Fig. 2. The generalized model of the rod with arbitrary elements.
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(c)
 At the right end of the 2nd last element (xb ¼ L�LN)

ûN�1ðxbÞ ¼ q̂b (15)

where q̂b is the nodal displacement at location b (sensor).
The above formulae can be rewritten in the matrix form as follows

D � G ¼ Q (16)

where D is the boundary matrix, which can be derived from Eqs. (13)–(15), N is the number of the elements,
G ¼ fB1;C1; . . . ;Bi;Ci; . . . ;BN ;CNg

T, Q ¼ fq̂a; . . . ; q̂bg
T. By updating Li according to the measured wave

signal, the damage lengths and locations can be determined. As an example, a 5-elements model is adopted for
a structure with one damage zone. The boundary matrix D of 5 elements is given in Appendix A.

Then, parameters Bi, Ci can be obtained using the inverse matrix of D.

G ¼ D�1 �Q (17)

Based on Eq. (12), the force boundary conditions can be represented as:

F̂ a

F̂ b

" #
¼

F̂ 2

F̂ N�1

" #
¼ EA �

0 0 �ik2e
�ik2L1 ik2e

�ik2L2 0 � � � 0 0 0 0

0 0 0 0 0 � � � �ikN�1e
�ikN�1ðL�LN Þ ikN�1 0 0

" #
� G

(18)

where F̂ a; F̂ b are the nodal forces at locations a and b.
From Eqs. (17) and (18), the force–displacement can be simplified as follows:

F̂ a

F̂ b

" #
¼

saa sab

sba sbb

" #
�

q̂a

q̂b

" #
(19)

Due to the inherent requirement of FFT, a throw-off element needs be added to the last element, which act as
a conduit to allow the propagation of the trapped energy out of the system. As a result, Eq. (19) becomes:

F̂ a

F̂ b

" #
¼

saa sab

sba sbb þ ikNEA

" #
�

q̂a

q̂b

" #
¼ S �

q̂a

q̂b

" #
(20)

When F̂ a and F̂ b are known, q̂a; q̂b can be easily obtained by Eq. (20). Based on this method, wave propagation
can be easily modeled regardless of the number of elements.
2.3. Damage indices

For a structure with homogeneous material, damage in the structure is often defined as the loss of elastic
modulus. But two materials with different properties work together in RC structures. Therefore, the
performance of RC relies on not only the steel rebar and concrete but also their interaction. If they bond well,
the force can be easily transferred from concrete to steel, and vice versa. But if debonding occurs, force
transfer is not as easy as before, and slip may occur, which will impede the composite action of RC and bring
down the performance of the structure severely.

In the proposed SEM, Ac is the variable which can provide some indications of debonding damage. In this
study, the debonding damage index and conventional damage indices are defined as follows:

ab ¼ 1�
A0c
Ac

as ¼ 1�
E 0s
Es
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ac ¼ 1�
E0c
Ec

(21)

where A0c is the unknown real effective area of concrete. E0c;E
0
s are the damaged elastic moduli for concrete

and steel, respectively. When there is no debonding nor damage to concrete and steel rebar, A0c ¼ Ac, E 0c ¼ Ec,
E0s ¼ Es and ab ¼ ac ¼ as ¼ 0. When full debonding occurs, A0c ¼ 0, or full damage to concrete or steel rebar,
E0c ¼ 0, E 0s ¼ 0, then ab ¼ ac ¼ as ¼ 1. In other cases, 0oab; ac; aso1.
3. Laboratory study

In order to verify the proposed model, an active sensing system using embedded piezoelectric components is
built in laboratory and the experimental study is carried out on bare steel bars and RC beams.
3.1. Experimental setup

The experimental system, shown in Fig. 3, includes two parts: (a) the actuating part is to provide the
excitation or input of the system. It includes the actuator based on piezoelectric strips and the power amplifier
that provides the power supply of the actuator; (b) the piezo sensing element is to measure the response. This
part includes the piezo film element and its charge amplifier.

The actuators were mounted on the surface of the steel reinforcing bar with Araldite Kit K138 and the steel
bars were cast into a concrete beam to evaluate the delamination between the steel bars and concrete. The strip
actuators from APC International, Ltd. were selected as actuators in this study. The actuator includes two
thin strips of piezoelectric ceramic that are bonded together, with the direction of polarization coinciding with
each other and are electrically connected in parallel. When electrical input is applied, one ceramic layer
expands and the other contracts, causing the actuator to flex. In this study, only one ceramic layer was applied
with the electrical input so that it would generate the wave. NI USB-6251 was used to provide the short-time
Morlet wavelet for actuating the structure by a linear power amplifier. The frequency and the number of cycles
can be adjusted to optimize the wave propagation along the steel bars. The waves were generated as above by
the following equation:

cðtÞ ¼ Ae�t2=2s2 cosð2pftþ jÞ (22)

where f is the centre wavelet frequency, s is the bandwidth parameter and controls the shape of the basic
wavelet. j is the phase. Normally, the waveform is defined in73s, and the number of cycles n is n ¼ 6sf . 6s is
the time duration of the waveform. Because wave signals decay quickly in concrete structures, the signal input
Scaled M
odel 

Embedded Actuator 

Linear Power 

Amplifier 

Embedded 

sensors: 

piezoelectric film 

elements  

Charge 

Amplifier 

Computer 

System 
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Signal 
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Signal 
NI 6133:  

A/D  

Fig. 3. Experimental system scheme.
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on the actuators should be as strong as possible to generate readable output at the sensors. A linear power
amplifier was developed to amplify the signals from the output of NI USB 6251.

The DT1 series piezo film elements from Measurement Specialties, Inc. were selected as the sensors. The
sensors were also glued to the steel bars with Araldite Kit K138. Signals from sensors were collected by a data
acquisition system made with NI PCI-6133. The sampling frequency of the system is up to 2MHz. A program
based on Labview was developed to control NI USB-6251 and make the two NI PCI-6133 cards work
simultaneously.
3.2. Experimental results

In order to understand the wave propagation along the steel bar with or without concrete coating, six 1.5m
long RC beams were fabricated in laboratory. The cross section of these concrete beams is 0.25m wide and
0.30m high, as shown in Fig. 1(a). There are two steel plain round bars in each concrete beam. The material
parameters of the steel bars are: Young’s modulus 210GPa, and mass density 7850 kg/m3. The whole length of
the steel rebar is 1.6m with 1.5m buried in the concrete and 0.05m free end outside of the concrete beam on
each side. The reason to leave 0.05m long rebar outside is for the convenience of the subsequent corrosion
tests, which is not within the scope of this study. The diameter of the steel bar is 0.01m. The actuator and
sensor were mounted on each steel round bar with 0.3m from the two ends of the bar, respectively. The
distance between the actuator and the sensor is 1m. The wave propagation tests were carried out on the bare
steel bars first. Then these steel bars were cast into the concrete beams. The location of steel rebar is shown in
Fig. 1(a). The thickness of the concrete cover over steel bars is 0.05m. The properties of concrete from
material tests are: the compressive strength—39.70MPa, the Young’s modulus—29.61GPa, and mass
density—2426.75 kg/m3. By the pull-out tests, the debonding strength is 0.21MPa for the plain round steel
bar. The wave propagation tests were carried out on these concrete beams after 28 days. The frequency of the
transmitted waves is 50 kHz and the number of the wave cycles is 5. The sampling frequency for data recording
is 2MHz.

In this study, only the measured data on three steel bars is analysed and discussed in detail. Results from
other steel bars are similar, but are not shown here. Fig. 4 shows the wave propagation along the three bare
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steel bars. In the figure, the responses from the three bare steel bars are close to each other when the input
signal is the same. This shows the system is reliable and stable to carry out the experimental study for wave
propagation. There are mainly three waves in the response. Compared with the input signal, the time interval
between the excitation source and the arrival of the waves are 0.20, 0.31 and 0.43ms, respectively. The peak
values of the three waves are 1.262, 2.371 and 1.109V. Wave1 is the incident wave from the input, and Wave2
and Wave3 are the reflected waves by the two ends of the steel bar. Since the distance between the actuator and
the left end is the same as that between the sensor and the right end, Wave2 is a combination of the two
reflected waves from the two ends. The wave propagation distances of these three waves from the actuator are
1.0, 1.6 and 2.2m, respectively. So the wave speeds from these waves are 5102.0, 5111.8, 5140.2m/s,
respectively. In Fig. 4(b), there are some small waves after the three main waves. They are the dispersive waves
due to non-uniformality or defects in the steel bar itself. These dispersive waves are also useful to detect
damages in the steel bar.

Fig. 5(a) shows the wave propagation along the steel bar in concrete beams. The first waves are again close
to each other, and the following waves are much complicated because of the complex interaction and many
reflections at the end of the concrete beam. Fig. 5(b) shows the comparison between the result from the bare
steel bar and that buried in the concrete. Compared with the wave propagation along the bare steel bar,
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the first wave is delayed when the steel bar is buried in the concrete and the amplitude is also much smaller,
clearly indicating the interaction effect of steel and concrete.

3.3. Model verification

Steel bar can be easily modeled using a uniform material model, while concrete material is more complex,
since it is a composite material that consists of sand, cement, and various sizes of aggregates. To simplify the
analysis, however, a linear, elastic, isotropic and homogeneous model is adopted in numerical simulation. The
damping ratios of steel and concrete are estimated from Eq. (3), their effect on the waveform will be discussed
in the following section. Based on Fig. 5(a), the time interval between the excitation source and the arrival of
the first wave is 0.445ms. Since the distance between the actuator and the sensor is 1m, the wave speed can be
obtained as 2247m/s. Based on Eq. (11), Ac ¼ 3.394� 10�4m2. As a result, the equivalent radius of the
effective concrete is 0.0204m, which is smaller than the cover thickness and distance between bars. Then, the
parameters for concrete–steel interface spectral element can be obtained through Eq. (5), with E ¼ 15.42GPa,
r ¼ 3446.10 kg/m3, and Z ¼ 1.083� 106.

In order to verify the numerical model in this study, the above tests are numerically simulated using the
above parameters. Fig. 6 shows the comparison between the experimental results and the numerical results.
Since the actuator and sensor are located in the middle of steel rebar, the 5-element model is used to analyse
the wave propagation in a bare steel rebar. As shown, the calculated wave is very close to the first wave of the
experimental result, demonstrating that the proposed model is effective to analyse the wave propagation in the
bare steel bar. In the numerical simulation, the throw-off element is used to let the wave energy propagate out
of the system, so there is no reflected wave. Simulation without considering damping effect is also carried out.
The result is shown in Fig. 6 for comparison. As shown, the amplitude of the calculated wave without the
damping is larger than that with the damping, but there is no obvious change in the waveform. The result
shows that the damping has a large effect on the wave amplitude but little effect on the waveform.

The proposed 5-element model is applied to the steel rebar in concrete beam. Fig. 7 shows the experimental
and numerical results for a steel bar in a concrete beam. From Fig. 7, the calculated incident wave is also close
to the measured incident wave. It shows that the proposed model and algorithm is effective and accurate to
analyse the wave propagation in concrete–steel interface.

4. Parametric study

In order to study the feasibility of GW-based damage identification of debonding damage in RC structures,
the effect of different debonding damage on the received wave is studied using the proposed numerical model.
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The above parameters of the test model are used in the calculation. Three parameters, namely debonding
length, location and level, are used to describe the debonding damage. The debonding level is defined as a
debonding damage index in Eq. (21) by the real effective area of concrete around the steel bar. The debonding
damage zone is defined as a damaged element, as shown in Fig. 2. The debonding length and location
correspond to the length and location of the damage element. Different debonding damage scenarios are
simulated by changing the debonding length, location and level. The effect of damage in concrete or steel bar
on waveform is also investigated by changing the damage indices ac; as in the element.

In this section, the changes in the incident wave due to damage in the RC structure are investigated. The
change in the incident wave and the feature parameters that will be extracted from the incident wave and are
sensitive to the debonding damage need be defined first. Giurgiutiu and Cuc [4] performed the damage
detection analysis in a structure through examining the changes of the GW amplitude, phase, dispersion and
time of flight using the pitch-catch method. Guided wave propagation along the steel bar buried in concrete is
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much complicated. Fig. 8 shows a typical wave propagation process from the input signal to the response.
There are three waves, namely Waves A, B and C in the figure. Wave A is the main incident wave propagated
from the wave source. Waves B and C are additional waves caused by debonding damage. In this study, four
parameters are used to describe the changes in the waveform due to the damage. The arrival time of Wave A is
defined as the time interval between the input signal and Wave A. This parameter is used to describe the time
delay of Wave A, which is related to the wave speed directly. The amplitude of Wave A is the second
parameter to describe the attenuation of wave propagation in the material. The time interval between
Waves A and B or Wave A and C is used to describe the time delay of Wave B or C. The amplitude ratio
of Wave A to B or Wave A to C is used to describe the amplitude properties of Wave B or C. In the above,
the amplitude of the wave is defined as the absolute peak value. The changes of these parameters due to the
damage and their sensitivity to damage are studied in the following.

4.1. Effect of the debonding damage

4.1.1. Effect of debonding length

The 5-element model is used in the calculation. The third element is taken as the damaged element and the
debonding damage index ab is equal to 1 that means the full debond of the element. Both the debonding length
and location are varied in numerical calculations. There are a total of 55 cases with the debonding length
varying from 0.0 to 1.0m with an increment of 0.1m; and the debonding location measured from the actuator
varying from 0.3 to 1.2m, also with a 0.1m increment. The detailed results are summarized in Table 1. Fig. 9
shows the incident waves with different debonding lengths at the debonding location of 0.5m. The results
show that the arrival time of Wave A reduces with the debonding length, and the amplitude increases with the
debonding length. These two parameters could be the good indicators of the debonding length. Wave B is
moving away from Wave A when the debonding length increases and there is no obvious change in the
amplitude of Wave B. The parameters related to Wave C, however, remain unchanged when the debonding
length increases. This is because a stress wave will be transferred into two parts: transmitted wave and reflected
wave when meeting a discontinuity, or debonding in the present case. The first reflected wave will be produced
at the starting location of the debonding damage and it will be reflected again at the wave source, which forms
Wave C. Therefore the time interval between Waves A and C is only related to the distance between the wave
source and the debonding location. At the end location of the debonding damage, another reflected wave will
be formed and it will be reflected again at the starting location, which becomes Wave B. The time interval
between Waves A and B is therefore only related to the debonding length.

Fig. 10 shows the relationship between the four parameters and the debonding length when the debonding
damage occurs at different locations. Fig. 10(a) shows the arrival times of Wave A for different debonding
length at 0.3, 0.5 and 0.8m. In the figure, the arrive times of Wave A are approximately the same when the
debonding is located at 0.3, 0.5 and 0.8m, respectively. It shows the debonding location, when it is in between
the source and receiver, has no effect on the arrival time of Wave A. The arrival time of Wave A reduces with
the debonding length and it has approximately a linear relationship. It can be fitted to the following equation:

y ¼ pxþ r (23)

The results are p ¼ �0.252 and r ¼ 0.445. As shown in Fig. 10(a), the fitted line agrees very well to all points.
Based on the results, the arrival time of Wave A is only dependent on the debonding length. It could be a good
indicator of the debonding length. This is because the interaction between the concrete and steel becomes
weaker when the length of the debonding zone increases, resulting in an increase in the wave speed. Fig. 10(b)
shows the relationship between the amplitude of Wave A and the debonding length when the debonding is
located at 0.4, 0.5 and 0.8m, respectively. It shows that the debonding location has no effect on the amplitude
of Wave A either. However, the wave amplitude depends on the debonding length. The relationship between
wave amplitude and debonding length is nonlinear and can be fitted by Eq. (24).

y ¼ pxq þ r (24)

The results are p ¼ 5.6591, q ¼ 1.3225 and r ¼ 5.41. This indicates that the amplitude of Wave A is also a
good indicator of debonding length.
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Table 1

Results based on the numerical models with different debonding lengths at different locations.

Debonding

location (m)

Debonding

length (m)

Arrival time

(ms)

Amplitude

(� 10�7)

Time interval (ms) Amplitude ratio

Waves A

and C

Waves A

and B

Waves A

and C

Waves A

and B

No damage 0 0.445 6.010 – – – –

0 0.1 0.42 8.931 0.051 – 3.238 –

0.2 0.395 9.788 0.089 – 3.457 –

0.3 0.369 10.42 0.128 – 3.875 –

0.4 0.343 11.14 0.168 – 4.320 –

0.5 0.318 12.23 0.206 – 4.900 –

0.6 0.292 13.44 0.245 – 5.563 –

0.7 0.267 14.45 0.283 – 6.218 –

0.8 0.241 15.38 0.321 – 6.937 –

0.9 0.215 16.62 0.361 – 7.918 –

1 0.189 19.07 0.397 – 9.142 –

0.1 0.1 0.42 5.679 0.090 – 3.238 –

0.2 0.394 6.213 0.091 – 4.558 –

0.3 0.369 6.560 0.090 – 3.454 –

0.4 0.342 6.926 0.091 – 3.311 –

0.5 0.317 7.626 0.090 – 3.267 –

0.6 0.292 8.488 0.090 – 3.375 –

0.7 0.266 9.149 0.090 – 3.475 –

0.8 0.24 9.623 0.090 – 3.404 –

0.9 0.215 10.31 0.089 – 3.278 –

0.2 0.1 0.42 5.677 0.180 – 4.604 –

0.2 0.394 6.212 0.180 0.077 4.671 8.546

0.3 0.369 6.561 0.180 0.116 4.509 9.262

0.4 0.342 6.925 0.180 – 3.998 –

0.5 0.317 7.624 0.180 – 4.938 –

0.6 0.292 8.486 0.179 – 4.609 –

0.7 0.266 9.148 0.180 0.271 4.646 15.97

0.8 0.24 9.623 0.180 0.310 4.378 17.88

0.3 0.1 0.42 5.677 0.270 – 6.273 –

0.2 0.394 6.212 0.270 0.077 6.132 8.553

0.3 0.369 6.560 0.270 0.116 5.785 9.277

0.4 0.342 6.925 0.271 0.156 5.676 10.08

0.5 0.317 7.624 0.271 0.194 5.980 11.55

0.6 0.292 8.486 0.270 – 6.010 –

0.7 0.266 9.148 0.270 – 4.307 –

0.4 0.1 0.42 5.676 0.360 – 8.190 –

0.2 0.394 6.212 0.360 0.077 7.928 8.556

0.3 0.369 6.560 0.360 0.116 7.825 9.284

0.4 0.342 6.924 0.361 0.156 7.798 10.09

0.5 0.317 7.624 0.360 0.194 8.036 11.57

0.6 0.292 8.485 0.360 0.232 7.967 13.60

0.5 0.1 0.42 5.676 0.450 – 10.56 –

0.2 0.394 6.212 0.450 0.077 10.59 8.559

0.3 0.369 6.560 0.449 0.116 10.66 9.287

Y. Wang et al. / Journal of Sound and Vibration 324 (2009) 751–772 763
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Table 1 (continued )

Debonding

location (m)

Debonding

length (m)

Arrival time

(ms)

Amplitude

(� 10�7)

Time interval (ms) Amplitude ratio

Waves A

and C

Waves A

and B

Waves A

and C

Waves A

and B

0.4 0.342 6.924 0.451 0.156 10.46 10.09

0.5 0.317 7.623 0.450 0.194 10.33 11.58

0.6 0.1 0.42 5.676 0.540 – 14.18 –

0.2 0.394 6.212 0.541 0.077 14.56 8.560

0.3 0.369 6.560 0.540 0.116 14.30 9.289

0.4 0.342 6.924 0.541 0.156 13.49 10.10

0.7 0.1 0.42 5.676 0.630 – 19.63 –

0.2 0.394 6.212 0.631 0.077 19.59 8.561

0.3 0.369 6.559 0.629 0.116 18.52 9.289

0.8 0.1 0.42 5.676 0.720 – 26.50 –

0.2 0.394 6.212 0.720 0.077 25.43 8.562

0.9 0.1 0.42 5.676 0.810 – 34.53 –
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Fig. 9. Received waves with different debonding lengths at the same location (0.5m): (a) debonding length: 0.1m; (b) debonding length:

0.2m; (c) debonding length: 0.5m; (d) debonding length: 0.8m.
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Fig. 10(c) shows the time interval between Waves A and B when the debonding length changes at different
locations, 0.2, 0.3 and 0.5m, respectively. From the figure, the time intervals are approximately the same when
the debonding is at different locations. That shows the debonding location again has no effect on the time
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interval between Waves A and B. The time interval has approximately a linear relationship with the debonding
length as Eq. (23). The parameters are p ¼ 0.3872 and r ¼ 0. Fig. 10(d) shows the relationship between the
amplitude ratio of Waves A and B and the debonding length when the debonding is located at 0.2, 0.3 and
0.5m from the wave source, respectively. The amplitude ratios are close to each other when the debonding is
at different locations, indicating the amplitude ratio is insensitive to the debonding location. But it is
influenced by the debonding length. The amplitude ratio is fitted to Eq. (24) with respect to the debonding
length. The parameters are p ¼ 15.69, q ¼ 2, r ¼ 7.865.

The results show that the debonding location has no obvious effect on the arrival time, the amplitude of
Wave A, and the time interval and the amplitude ratio between Waves A and B. But all these parameters
depend on the debonding length, the analytical relationships between debonding length and these parameters
are derived based on the numerical simulation results. These relationships can be used as indicators to
quantify the debonding length.

4.1.2. Effect of debonding location

From the above analysis, Waves A and B is only related to the debonding length. The corresponding
parameters from Waves A and B alone are not sufficient to indicate the debonding location. The new
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parameters are therefore needed to indicate the debonding location. As shown in Fig. 9, there is no obvious
change in Wave C for different debonding lengths when the debonding location is the same at 0.5m from the
excitation source. Fig. 11(a) shows the incident waves with the same debonding length at different locations,
0.4, 0.5 and 0.8m from the excitation source, respectively. In this figure, it shows again that there is no obvious
change in Waves A and B. Wave C, however, moves away from Wave A and the amplitude of Wave C reduces
with the debonding location moving towards the right direction away from the excitation source. This
observation indicates that Wave C depends on the debonding location and its parameters can be used to
identify the debonding location.

From the above definition, the time interval between Waves A and C is used to describe the time delay of
Wave C, and the amplitude ratio between Waves A and C is used to describe the amplitude change of Wave C.
Fig. 11(b) shows the relationship between the time interval and the debonding location when the debonding
lengths are 0.1, 0.3 and 0.5m, respectively. The result shows that the time interval between Waves A and C is
the same when the debonding length changes, indicating that the debonding length has no obvious effect on
the time interval between Waves A and C. But the time interval has approximately a linear relationship with
the debonding location as Eq. (23). The fitted parameters are p ¼ 0.9 and r ¼ 0. Based on Table 1, although
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the amplitude ratio between Waves A and C increases with the debonding location moving to the right
away from the excitation source, the parameter fluctuates largely and thus is not suitable for damage
detection. This fluctuation is caused by the interaction and coupling of Waves B and C, which
becomes more significant and more likely when the debonding occurs at a location towards the right end
of the steel bar.
4.1.3. Effect of the debonding level

To investigate the effect of ab on wave propagation, the damage length is taken as 0.5m and the damage is
assumed to occur at the middle of the steel bar, i.e., 0.55m from the left end. ab is varied from 0 to 1 for fully
bonded and fully debonding scenario, respectively. Fig. 12(a) shows the incident signals with different bonding
conditions. As shown, the arrival time of Wave A decreases when ab reduces. That means the arrival time of
Wave A increases when the debonding level decreases. The arrival time of Wave C also decreases when ab

reduces. Fig. 12(b) shows the relationship between the amplitude ratio of Wave A to Wave C and ab. It is
nonlinear and can be fitted to Eq. (24). The results are p ¼ 5.8, q ¼ �1, and r ¼ 0.
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Fig. 12. Effect of the debonding strength: (a) wave propagation along a steel rebar in a concrete beam with different bond damage
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Table 2

Results based on the model with different ab.

ab Arrival time (ms) Amplitude (� 10�7) Time interval (ms) Amplitude ratio

Waves A and C Waves A and B Waves A and C Waves A and B

0 0.445 6.010 – – – –

0.1 0.434 6.504 0.270 – 58.86 –

0.2 0.421 6.518 0.270 – 27.18 –

0.3 0.409 6.696 0.271 – 18.94 –

0.4 0.398 7.193 0.271 – 15.32 –

0.5 0.388 6.966 0.271 – 11.50 –

0.6 0.379 7.093 0.271 0.218 9.663 36.10

0.7 0.371 7.048 0.270 0.201 8.085 24.37

0.8 0.363 7.041 0.270 0.185 7.067 17.37

0.9 0.355 7.159 0.271 0.170 6.690 13.48

1 0.347 6.925 0.271 0.156 5.676 10.08

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.10.30.20.10

-6

-4

-2

0

2

4

6

x 10-7

Time (ms)

S
ca

le
d 

am
pl

itu
de

αc: 0.1

αc: 0.05

αc: 0

Fig. 13. Wave propagation along a steel rebar in a concrete beam with three different concrete damage scenarios.
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Table 2 shows the variation of the six parameters when ab is varied from 0 to 1. The arrival time of Wave A
reduces when ab increases. However, there is no obvious change in the amplitude of Wave A. The time interval
between Waves A and C remains the same when ab changes. Wave B appears only when ab is larger than 0.5,
and its arrival time decreases when ab increases. The amplitude ratio between Waves A and C reduces when ab

increases.

4.2. Effect of the material properties of concrete and steel bar

Assume ac changes from 0.0 to 0.1, and the damage is 0.5m long and is located at 0.55m from the left end.
Fig. 13 shows the wave signals with different concrete damage. In the figure, there is no obvious change in
Wave A, and Waves B and C are all very small. In practice, it is more convenient to record the first two waves
(A and B) because of their earlier arrival and higher amplitude than Wave C. So only the first two waves are
investigated. Table 3 shows the calculated results of four parameters when ac changes. The arrival time of
Wave A reduces when ac increases. It indicates that when the Young’s modulus of concrete decreases, the
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Fig. 14. Wave propagation along a steel rebar in a concrete beam with different steel damage scenarios.

Table 3

Results based on the model with different ac.

ac Arrival time (ms) Amplitude (� 10�7) Time interval (ms) Amplitude ratio

0 0.445 6.010 – –

0.01 0.444 6.169 0.222 574.39

0.02 0.442 6.316 0.223 201.92

0.03 0.44 6.227 0.223 124.96

0.04 0.44 6.014 0.222 89.88

0.05 0.438 6.265 0.223 69.76

0.06 0.436 6.168 0.223 58.35

0.07 0.436 6.128 0.222 49.02

0.08 0.434 6.222 0.223 43.36

0.09 0.433 6.154 0.223 37.96

0.1 0.432 6.107 0.222 34.68
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arrival time of Wave A will be reduced, which means the wave speed will increase, which can be explained by
Eq. (10). The time interval between Waves A and B remains the same when ac increases, but the amplitude
ratio reduces quickly when ac increases, indicating that the amplitude ratio is a better indicator of damage in
concrete because it is much more sensitive than the arrival time. The amplitude of Wave A fluctuates from 6.01
to 6.32, but it has no direct relation with the concrete damage.

Similar to ac, as is changed from 0.0 to 0.1. The same damage length and location is assumed. Fig. 14
shows the generated incident wave signals with different as. The results show that the arrival time of
Wave A will increase when the Young’s modulus of steel decreases. That means that the wave speed will
decrease with as. Waves B and C appear nearly simultaneously but their amplitudes become larger when the
damage in the steel bar increases. To investigate the effect of steel damage quantitatively, the calculated
parameters corresponding to different as are shown in Table 4. In the table, time interval value remains a
constant for different steel damage. The amplitude of Wave A fluctuates with no apparent rule. The arrival
time increases and the amplitude ratio reduces with as. These two parameters will be good indicators for steel
damage.
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Table 4

Results based on the model with different as.

as Arrival time (ms) Amplitude (� 10�7) Time interval (ms) Amplitude ratio

0 0.4451 6.010 – –

0.01 0.448 6.211 0.222 135.85

0.02 0.45 6.254 0.223 75.78

0.03 0.453 6.167 0.223 51.22

0.04 0.456 6.022 0.223 38.88

0.05 0.459 6.023 0.223 31.09

0.06 0.462 6.203 0.222 25.72

0.07 0.465 6.126 0.223 22.17

0.08 0.468 6.301 0.223 19.18

0.09 0.472 6.259 0.222 16.92

0.1 0.476 6.004 0.222 14.95

Y. Wang et al. / Journal of Sound and Vibration 324 (2009) 751–772770
From the numerical results, as and ac have relatively less effects, as compared to the debonding damage, on
wave propagations along a steel bar in a RC structure.

It should be noted that the above parametric analyses are performed based on the assumption that the
debonding damage and the material deterioration occurs independently and separately. In practice, debonding
and material deterioration, i.e., reduction in elastic modulus, may occur simultaneously. Further studies are
needed to differentiate these different damage types. It should also be noted that the above results and
observations are made based on the condition that the debonding damage occurs in between the wave source
and the receiver. If debonding occurs behind the receiver, it will also affect the recorded signal owing to wave
reflection. However, the above observations will not be the same.
5. Conclusions

A concrete–steel spectral element has been developed to analyse wave propagation along a steel rebar in
concrete. The wave propagation characteristics corresponding to different structural conditions were analysed.
The changes in the wave propagation properties were suggested to be used to identify structural damages.
Three damage indices are defined to describe damage in concrete, steel rebar or debonding between the steel
rebar and concrete. Laboratory study has been carried out to verify the developed SEM for modeling wave
propagations. The results show the model can be used to predict the wave propagation along the steel bar in
concrete with complex interaction between the steel rebar and concrete.

The relationships between the damage indices and the wave parameters have also been obtained and they
can be used to quantify the damage in RC structures. Several parameters related to Waves A, B and C are
proposed and applied to damage detection. Based on the time interval between Waves A and C, the debonding
location can be estimated. The amplitude ratio between Waves A and C is a good indicator of the debonding
damage index. The amplitude and arrival time of Wave A can be used to determine the debonding length. The
relationships between the parameters and damage are obtained and can be used to quantify the damage. It
should be noted that the above formulas are based on rod theory. If the steel rebar is thicker, ideal rod theory
may be inapplicable due to lateral inertia effect. Further experimental study is needed to obtain the empirical
formulas for different geometrical conditions.
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